

Journal of Hazardous Materials B135 (2006) 412-417

www.elsevier.com/locate/jhazmat

Journal of Hazardous Materials

Simultaneous removal of SO₂ and NO by wet scrubbing using aqueous chlorine dioxide solution

Dong-Seop Jin^a, Bal-Raj Deshwal^{b,*}, Young-Seong Park^c, Hyung-Keun Lee^a

^a Flue Gas Treatment Center, Korea Institute of Energy Research, Daejon 305 600, Republic of Korea ^b Department of Chemistry, A.I.J.H.M. College, Rohtak 124001, Haryana, India

^c Department of Environmental Engineering, Daejon University, Daejon, Republic of Korea

Received 1 October 2004; received in revised form 30 November 2005; accepted 1 December 2005 Available online 25 January 2006

Abstract

The present study attempts to generate chlorine dioxide (ClO₂) gas continuously by chlorate–chloride process and to utilize it further to clean up SO₂ and NO_x gases simultaneously from the flue gas in the lab-scale bubbling reactor. Experiments were carried out to examine the effect of various operating parameters like input SO₂ concentration, input NO concentration, pH of the reaction medium, and ClO₂ feeding rate on the SO₂ and NO_x removal efficiencies at 45 °C. Complete oxidation of NO into NO₂ occurred on passing sufficient ClO₂ gas into the scrubbing solution. SO₂ removal efficiency of about 100% and NO_x removal efficiency of 66–72% were achieved under optimized conditions. NO_x removal efficiency decreased slightly with increasing pH and NO concentration. Input SO₂ concentration had marginal catalytic effect on NO₂ absorption. No improvement in the NO_x removal efficiency was observed on passing excess of chlorine dioxide in the scrubbing solution.

Keywords: Removal; Sulfur dioxide; Nitric oxide; Bubbling reactor; Chlorine dioxide

1. Introduction

Fossil fuels, viz. coal, petroleum, and natural gas are the major sources of the energy. According to a statistical survey of Korea Energy Management Corporation (2002), petroleum, coal, and natural gas contributed 49.1, 23.5, and 11.1%, respectively, to the total energy generated by the various sources in Korea. Combustion of fossil fuels in the stationary sources such as power plants, incinerators, and boilers results into emission of SO₂ and NO_x . Though the flue gases from these sources mainly contain NO and NO₂ but the major component of NO_x is NO (ca. 90%). Flue gas desulfurization (FGD) is the most widely used process that can remove SO₂ efficiently. However, NO cannot be as easily removed as SO_2 . Technologies for NO_x removal include combustion control and post-combustion treatment. Combustion control aims at reducing the NO_x formation during combustion of fossil fuels. Post-combustion methods include selective noncatalytic reduction (SNCR), selective catalytic reduction (SCR), scrubbing, etc. Among these technologies, scrubbing methods

* Corresponding author. *E-mail address:* deshwalbr@yahoo.com (B.-R. Deshwal).

0304-3894/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2005.12.001 are economically the most competitive and have advantage of controlling other acid gases and particulates at the same time [1].

In general, additives are added into scrubbing system first to convert relatively inert NO into NO₂, which can be removed by alkaline absorbents. Aqueous solutions of numerous oxidants have been investigated to determine their effectiveness in the removal of NO_x [2–20], and sodium chlorite [7–17] has proved the most efficient oxidant among them. However, the drawback with sodium chlorite is that it has good oxidizing ability at lower pHs while the absorbing capability is good at higher pHs. Therefore, pH is a crucial parameter to oxidize NO into NO₂ and to absorb NO₂ thereafter. Secondly, it is relatively unstable and quite expensive chemical. It is produced itself by reduction of chlorine dioxide as follows:

$$2\text{ClO}_2 + \text{H}_2\text{O}_2 + 2\text{NaOH} \rightarrow 2\text{NaClO}_2 + \text{O}_2 + 2\text{H}_2\text{O}$$
(1)

In the recent years, chlorine dioxide, a novel neutral oxy-chlorine species has attracted significant commercial attention not only due to environmental concern but also for its wide applications in the fields of bleaching, oxidation, and disinfection. It is commercially used in textile, paper, fat, and pulp bleaching, waste water treatment, water purification, removal of iron, manganese, H_2S ,

and phenols from industrial wastes, medical treatment, sanitation, food processing, fumigation, deodorization, aquaculture, etc. The chlorine dioxide based bleaching process; the so-called ECF technology [21] has become quite popular in the production of bleached chemical pulps.

Chlorine dioxide is always generated on-site because of its unstable nature and risk of rapid decomposition. It can be produced from acid solutions of either sodium chlorite [22-27] or sodium chlorate [28-35]. Most of the small-scale generators use sodium chlorite as the precursor material. Other applications where large quantities of chlorine dioxide are needed, utilize sodium chlorate. Though the conditions for the production of ClO₂ from sodium chlorite can be controlled better than from sodium chlorate but chlorite is more expensive and chemically unstable. Therefore, from industrial point of view, sodium chlorate is more suitable raw material for ClO₂ generation.

Chlorine dioxide can be produced by reduction of chlorate with a wide variety of reducing agents in a relatively concentrated acidic media as follows:

$$ClO_3^- + 2H^+ + e^- \rightarrow ClO_2 + H_2O \tag{2}$$

The choice of reducing agent is very important depending on the optimum reaction conditions, by-products, and the economics of the process. In all chlorate-based processes, chloride ion plays a crucial role. No chlorine dioxide is formed if chloride is not present in the reaction medium. With this view, we selected chlorate–chloride process to generate ClO₂ gas and further used

this gas for the removal of SO_2 and NO from the flue gas. The general stoichiometry of chlorate–chloride process may be expressed as [31–35]:

$$4H^{+} + 2ClO_{3}^{-} + 2Cl^{-} \rightarrow 2ClO_{2} + Cl_{2} + 2H_{2}O$$
(3)

In our earlier work [32], we studied the kinetics and mechanism of the above process. This process is extremely simple to operate, responds immediately, and gives highest yield of ClO_2 at the lowest cost among all other commercial processes.

In the present study, ClO₂ has been utilized directly to oxidize NO. It not only reduced the cost but also solved the problem of pH adjustment. Chlorine dioxide, however, has been extensively used for oxidation, disinfection, and bleaching, but no reference is cited on its use in the simultaneous removal of SO₂ and NO. There is no doubt about the oxidizing capability of ClO₂. Standard oxidation potential of chlorine dioxide in gas and solution phase is -0.95 and -1.27 V, respectively [36]. It has the potential to oxidize NO into NO₂. Therefore with this aim, chlorine dioxide has been chosen to clean up NO_x and SO₂ simultaneously from the flue gas.

2. Experimental

The experimental system is divided into two parts, i.e., chlorine dioxide generation unit and flue gas treatment unit. A schematic diagram of the experimental system is shown in Fig. 1.

Fig. 1. A schematic diagram of lab-scale bubbling reactor for simultaneous removal of SO₂ and NO_x from simulated flue gas.

2.1. Chlorine dioxide generation unit

This unit composed of a reactor, which is well-stirred sealed vessel having total volume of 2.5 L. Concentrated sodium chloride solution (1-2 M) was continuously injected into reactor at a suitable flow rate (0.5-1.5 mL/min) by a syringe pump (Model-200, KDS Scientific Inc., USA). The reactor was filled with 1.5 L solution of sodium chlorate (0.2-0.4 M) in a relatively concentrated sulfuric acid (11-12N). Continuous stirring was provided by a mechanical agitator. Temperature of the reaction vessel was controlled within 45 ± 0.1 °C by water thermostat (WBC-1506D, JEIO TECH, Korea). The reactor was wrapped with an aluminium foil to avoid any photo-dissociation of chlorine dioxide. Nitrogen gas was purged through the reaction mixture using a bubbling device at a flow rate of 2 L/min. Chlorine dioxide carried by N₂ gas was further introduced into bubbling reactor.

2.2. Flue gas treatment unit

It is composed of simulated flue gas supply system, bubbling reactor, pH control system, ClO2 absorber, data acquisition system, and sampling cum analysis system. The bubbling reactor is a well-stirred sealed vessel (ID, 15 cm; height, 45 cm) having internal volume of 8 L. The simulated flue gas was obtained by controlled mixing of SO₂, NO, and N₂ using mass flow controllers (MFC). Air was introduced into reactor using air pump to maintain the dissolved O_2 concentrations about 30–40% of the saturated O₂ concentrations. Continuous stirring was provided by a mechanical agitator (4 blades disc, turbine type impeller) with a speed of 250 rpm. Temperature of the reaction vessel was controlled within 45 ± 0.1 °C. The pH of reaction solution was controlled by using an auto-pH control system (KFC-MK-250, Korea) by continuous addition of NaOH (0.2 M) solution with the help of peristalsis pump (Cole-Palmer Co., USA). The chlorine dioxide absorbers (2 L vessel) consisted of ca. 2% carbonate buffered potassium iodide solution (1.5 L). Samples from reactor and absorbers were analyzed either by ion chromatograph (IC) or by iodometric titration using auto-titrator (Metrohm-Swiss). The inlet and outlet gas concentrations were analyzed after removing its moisture in the sample conditioner by the SO₂ analyzer (Model-Ultramat 23, IR type, Siemens, Germany), NO_x analyzer (Model-42C, Chemiluminescent type, Thermo Environmental Instruments Inc., USA), and DO meter (835A, Thermo Orion, USA).

2.3. Materials

Standard gases included N_2 (99%), SO₂ span gas (99%), and NO span gas (99.9%). N_2 and SO₂ were the products of Anjeon Gas Co., Korea and NO was the product of Mathieson Co. Sodium chlorate (98%, Junsei Chemical Co. Ltd., Japan), sodium chloride (99.5%, Aldrich Chem. Co. Inc., USA), sulfuric acid (98%, PFP, Japan), potassium iodide (99.5%, Samchun Pure Chem. Co. Ltd., Korea), and sodium thiosulfate (99%, Shinyo Pure Chem. Co. Ltd., Japan) were the analytical grade reagents used in the present study.

3. Results and discussion

The experiments for the simultaneous removal of SO₂ and NO were conducted by passing chlorine dioxide gas into the scrubbing solution. Effects of various parameters, viz. input NO and SO₂ concentration, ClO₂ feeding rate, and pH of reaction medium were investigated in a lab-scale bubbling reactor at 45 °C.

3.1. Simultaneous removal of sulfur dioxide and nitric oxide

Simultaneous removal of SO₂ and NO was studied at 45 °C, pH 3.5, and input SO₂ and NO concentration of 500 and 350 ppm, respectively. SO₂ and NO_x removal efficiencies and concentration profiles of various ions with the passage of time are presented in Fig. 2. It was observed that ClO₂ cleaned up both SO₂ and NO quite efficiently. ClO₂ oxidized NO into NO₂ completely and a consistent and reproducible NO₂ absorption efficiency of about 70% was observed. The DeSO_x efficiency obtained at an optimum ClO₂ feeding rate of 0.82 mmol/min was almost 100%.

In the acidic medium, NO and SO_2 removal by chlorine dioxide is considered to follow the following mechanism [12,13]:

$$5SO_2 + 2ClO_2 + 6H_2O \rightarrow 5H_2SO_4 + 2HCl \tag{4}$$

 $5NO + 2ClO_2 + H_2O \rightarrow 5NO_2 + 2HCl$ (oxidation) (5)

$$5NO_2 + CIO_2 + 3H_2O \rightarrow 5HNO_3 + HCl$$
 (absorption) (6)

The overall reaction for the NO_x removal can be written as [12,13]:

$$5NO + 3ClO_2 + 4H_2O \rightarrow 5HNO_3 + 3HCl$$
(7)

Fig. 2. Simultaneous removal SO₂ and NO_x with time using ClO₂ at 45 $^{\circ}$ C, pH 3.5, ClO₂ feeding rate of 0.82 mmol/min, and input NO and SO₂ concentration of 350 and 500 ppm, respectively, also shown are the concentrations of various ions formed.

Fig. 3. Effect of input NO concentration on NO_x removal at 45 $^{\circ}$ C, pH 3.5, input SO₂ concentration of 500 ppm, and ClO₂ feeding rate of 1.11 mmol/min.

Chlorine gas produced along with chlorine dioxide as suggested in Eq. (3) is again a strong oxidant. Yang et al. [1] reported that chlorine is capable of oxidizing NO into NO₂ and nitrate. The stoichiometry of reaction between chlorine with NO can be expressed as [1]:

$$NO + Cl_2 + H_2O \rightarrow NO_2 + 2HCl$$
(8)

$$2NO + 3Cl_2 + 4H_2O \rightarrow 2HNO_3 + 6HCl \qquad (9)$$

Formation of sulfate, nitrate, and chloride as suggested above was confirmed by analyzing the samples from bubbling reactor using an ion chromatograph.

3.2. Effect of input NO concentration

Effect of input NO concentration on the simultaneous removal of SO₂ and NO_x at 45 °C was investigated at input SO₂ concentration of 500 ppm, ClO₂ feeding rate of about 1.11 mmol/min, and pH 3.5. Fig. 3 displays the NO_x removal efficiency at various input NO concentrations. It was found that NO_x removal efficiency remained almost constant at around 70% when input NO concentration was increased from 150 to 550 ppm. The slight decrease in the end was due to insufficient ClO₂ feeding rate as reflected in the increase in output NO concentration.

3.3. Effect of input SO₂ concentration

Experiments were also carried out at 45 °C, pH 3.5, and input NO concentration of 350 ppm to investigate the effect of input SO₂ concentration on NO_x removal efficiency. As can be seen in Fig. 4, NO_x removal was around 66% in the absence of input SO₂. At input SO₂ concentration of 250 and 500 ppm, NO_x removal increased from 66 to about 70%. This enhancement in

Fig. 4. Effect of input SO₂ concentration on NO_x removal at 45 $^{\circ}$ C, pH 3.5 and input NO concentration of 350 ppm.

 NO_x removal is believed due to reaction of S(IV) species with nitrogen dioxide, consequently increasing the NO_2 absorption [37].

3.4. Effect of ClO₂ feeding rate

Some experiments were also performed to investigate the effect of ClO₂ feeding rate on SO₂/NO_x removal efficiency at 45 °C, pH 3.5, and input NO and SO₂ concentration of 350 and 500 ppm, respectively. It is clear from Fig. 5 that NO_x removal started only after achieving complete removal of SO₂. NO_x removal started above ClO₂ feeding rate of 0.55 mmol/min and thereafter increased sharply and attained a steady state. Complete oxidation of NO into NO₂ occurred on passing sufficient chlorine dioxide gas into scrubbing solution and the maximum DeNO_x efficiency obtained was around 71%.

Fig. 5. Effect of ClO₂ feeding rate on SO₂/NO_x removal at 45 $^{\circ}$ C, pH 3.5, and input NO and SO₂ concentration of 350 and 500 ppm, respectively.

Fig. 6. Effect of pH on NO_x removal at $45 \,^{\circ}$ C, ClO₂ feeding rate of 1.11 mmol/min, input NO and SO₂ concentration of 350 and 250 ppm, respectively, also shown are the chlorate formed by the disproportionation of ClO₂.

3.5. Effect of pH

The pH of reaction medium is a crucial parameter when the NO_x removal is done using sodium chlorite solution. In the present study, pH of reaction medium was varied from 3.5 to 8 at constant input NO and SO₂ concentration of 350 and 250 ppm, respectively at 45 °C and its effect on NO_x removal, output NO, and NO₂ concentration is reported in Fig. 6. At constant ClO₂ feeding rate of about 1.11 mmol/min, the NO_x removal efficiency was found 70.8% at pH of 3.5 and it decreased slightly with increasing pH. It may be attributed due to disproportionation of ClO₂ at higher pH. When pH reaches neutrality, the disproportionation of chlorine dioxide [22,24,27] starts and it leads to formation of chlorite and chlorate as follows:

$$2\text{ClO}_2 + 2\text{NaOH} \rightarrow \text{NaClO}_2 + \text{NaClO}_3 + \text{H}_2\text{O}$$
(10)

The chlorate formed is quite stable under these conditions but chlorite is again a strong oxidant and absorbent for NO and NO_2 , respectively. Thus, the NaClO₂ produced in Eq. (10), is in situ utilized in the removal the NO from flue gas as follows:

$$4NO + 3NaClO_2 + 4NaOH$$

$$\rightarrow 4NaNO_3 + 3NaCl + 2H_2O$$

The mechanism of above reaction has been discussed earlier [7,11-14,17]. The chlorate concentration and percent disproportionation of ClO₂ at various pHs is shown in Fig. 6.

(11)

4. Conclusion

Chlorine dioxide proved quite promising additives for the simultaneous removal of SO₂ and NO. It exhibited almost 100% SO₂ removal, 100% NO oxidation, and 66–72% NO_x

removal efficiency. Input NO concentration has negligible effect on NO_x removal. NO_x removal efficiency increased marginally with increasing input SO₂ concentration but decreased with increasing pH. The excess supply of ClO₂ did not improve the NO_x removal efficiency. In conclusion, it is reasonable to say that chlorine dioxide is a suitable additive for the simultaneous removal of SO₂ and NO from the flue gas. It is quite effective in a wide pH range and does not require any tight pH control. It is cheaper too when compared with other additives.

References

- C.L. Yang, H. Shaw, H.D. Perlmutter, Absorption of NO promoted by strong oxidizing agents: 1. Inorganic oxy-chlorites in nitric acid, Chem. Eng. Commun. 143 (1996) 23–38.
- [2] S. Chang, D. Littlejohn, S. Lynn, Effect of metal chelates on wet flue gas scrubbing chemistry, Environ. Sci. Technol. 17 (1983) 649–653.
- [3] P. Harriott, K. Smith, L.B. Benson, Simultaneous removal of NO and SO₂ in packed scrubbers or spray towers, Environ. Prog. 12 (1993) 110–113.
- [4] K.K. Baveja, D. Subba Rao, M.K. Sarkar, Kinetics of absorption of nitric oxide in hydrogen peroxide solutions, J. Chem. Eng. Jpn. 12 (1979) 322–325.
- [5] D. Littlejohn, S. Chang, Removal of NO_x and SO₂ from flue gas by per-acid solution, Ind. Eng. Chem. Res. 29 (1990) 1420–1424.
- [6] H. Perlmutter, H. Ao, H. Shaw, Absorption of NO promoted by strong oxidizing agent: I. Organic tertiary hydro-peroxides in *n*-hexadecane, Environ. Sci. Technol. 27 (1993) 128–133.
- [7] E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption of lean NO_x in aqueous solutions of $NaClO_2$ and NaOH, Ind. Eng. Chem. Process Des. Dev. 18 (1979) 275–278.
- [8] E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption of NO in aqueous mixed solutions of NaClO₂ and NaOH, Chem. Eng. Sci. 33 (1978) 315–318.
- [9] E. Sada, H. Kumazawa, Y. Yamanka, I. Kudo, T. Kondo, Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide, J. Chem. Eng. Jpn. 11 (1978) 276–282.
- [10] E. Sada, H. Kumazawa, Y. Yamanka, I. Kudo, T. Kondo, Absorption of lean NO in aqueous slurries of Ca(OH)₂ with NaClO₂ or Mg(OH)₂ with NaClO₂, Chem. Eng. Sci. 34 (1979) 719–724.
- [11] C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in an aqueous solution of NaClO₂, Chem. Eng. Technol. 21 (1998) 61–70.
- [12] C.L. Yang, H. Shaw, Aqueous absorption of NO_x induced by sodium chlorite oxidation in the presence of sulfur dioxide, Environ. Prog. 17 (1998) 80–85.
- [13] Y.G. Adewuyi, X. He, H. Shaw, W. Lolertpihop, Simultaneous absorption and oxidation of NO and SO₂ by aqueous solutions of sodium chlorite, Chem. Eng. Commun. 174 (1999) 21–51.
- [14] H.W. Hsu, C.J. Lee, K.S. Chou, Absorption of NO by NaClO₂ solution: performance characteristics, Chem. Eng. Commun. 170 (1998) 67–81.
- [15] H. Chu, T.W. Chien, B.W. Twu, The absorption kinetics of NO in NaClO₂/NaOH solutions, J. Hazard. Mater. B84 (2001) 241–252.
- [16] T.W. Chien, H. Chu, Removal of SO₂ and NO from flue gas by wet scrubbing using an aqueous NaClO₂ solution, J. Hazard. Mater. B80 (2000) 43–57.
- [17] H.K. Lee, B.R. Deshwal, K.S. Yoo, Simultaneous removal of SO₂ and NO by sodium chlorite solution in wetted-wall column, Korean J. Chem. Eng. 22-2 (2005) 208–213.
- [18] E. Sada, H. Kumazawa, N. Hayakawa, I. Kudo, T. Kondo, Absorption of NO in aqueous solutions of KMnO₄, Chem. Eng. Sci. 32 (1977) 1171–1175.
- [19] C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in an alkaline solution of KMnO₄, Chem. Eng. Technol. 20 (1997) 396–402.

- [20] H. Chu, S.Y. Li, T.W. Chien, The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO₄/NaOH solutions, J. Environ. Sci. Health A 33 (1998) 801–827.
- [21] D.C. Pryke, D.W. Reeve, A survey of ClO₂ delignification practices in Canada, Tappi J. 80 (5) (1997) 153.
- [22] M.C. Taylor, J.F. White, G.P. Vincent, G.L. Cunningham, Sodium chlorite, properties and reactions, Ind. Eng. Chem. 32 (1940) 899–903.
- [23] B.R. Deshwal, H.D. Joe, H.K. Lee, Reaction kinetics of decomposition of acidic sodium chlorite, Can. J. Chem. Eng. 82 (2004) 619–623.
- [24] J.F. White, M.C. Taylor, G.P. Vincent, Chemistry of chlorites, Ind. Eng. Chem. 34 (1942) 782–792.
- [25] T. Tang, G. Gordon, Stoichiometry of the reaction between chlorite ion and hypochlorous acid at pH 5, Environ. Sci. Technol. 18 (1984) 212–216.
- [26] E.M. Aieta, P.V. Roberts, Kinetics of the reaction between molecular chlorine and chlorite in aqueous solution, Environ. Sci. Technol. 20 (1) (1986) 50–55.
- [27] B.R. Deshwal, H.K. Lee, Manufacture of chlorine-dioxide from sodium chlorite: process chemistry, J. Ind. Eng. Chem. 11-1 (2005) 125– 136.
- [28] V. Woodside, K.S. Macleod, Chlorine dioxide for bleaching, Paper Trade J. 26 (1953) 137–142.

- [29] Y. Ni, X. Wang, Mechanism of the methanol based ClO₂ generation process, J. Pulp Paper Sci. 23 (7) (1997) J346–J351.
- [30] M. Burke, J. Tenney, B. Indu, M.F. Hoq, S. Carr, W.R. Ernst, Kinetics of hydrogen peroxide-chlorate reaction in the formation of chlorine-dioxide, Ind. Eng. Chem. Res. 32 (1993) 1449–1456.
- [31] J. Tenney, M. Shoaei, T. Obijeski, W.R. Ernst, Experimental investigation of a continuous chlorine-dioxide reactor, Ind. Eng. Chem. Res. 29 (1990) 916–921.
- [32] B.R. Deshwal, H.-K. Lee, Kinetics and mechanism of chloride based chlorine dioxide generation process from acidic sodium chlorate, J. Hazard. Mater. B108 (2004) 173–182.
- [33] C.C. Hong, F. Lenzi, W.H. Rapson, The kinetics and mechanism of the chloride-chlorate reaction, Can. J. Chem. Eng. 45 (1967) 349–355.
- [34] F. Lenzi, W.H. Rapson, Further studies on the mechanism of formation of chlorine-dioxide, Pulp Paper Mag. Can. 63 (1962) T442–T448.
- [35] B.R. Deshwal, H.K. Lee, Variation in ClO₂/Cl₂ ratio in chloride–chlorate process under different conditions, J. Ind. Eng. Chem. 10–4 (2004) 667–673.
- [36] J.A. Dean, Lange's Handbook of Chemistry, 12th ed., McGraw-Hill, New York, 1979.
- [37] C.H. Shen, G.T. Rochelle, Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite, Environ. Sci. Technol. 32 (1998) 1994–2003.